## Sea Ice Mechanics

### Deborah Sulsky

Department of Mathematics and Statistics

Department of Mechanical Engineering

University of New Mexico

Albuquerque, New Mexico 87131

http://www.math.unm.edu/~sulsky



#### With thanks to .....

Oksana Guba (post doc) Ed Love (post doc, now at Sandia National Labs) Giang Nguyen (post doc, now at CE, Univ of Sydney) Lynn Monday (student, now at Univ of Maryland/ARL) Kara Peterson (student, now at Sandia National Labs) Howard Schreyer (UNM Mechanical Engineering) Ron Kwok (JPL) Max Coon (NWRA, Seattle) Gad Levy (NWRA, Seattle) Matt Prius (NWRA, Seattle)



### **Research Focus**

New Sea-Ice Constitutive Model

Elastic-Decohesive Model

Numerical Method

Material-Point Method



### Why A New Ice Model?

The viscous-plastic model is an isotropic model based on a 100 km scale in which it was assumed that cracks, ridges and leads were randomly distributed.

RGPS analysis of satellite images shows large ice deformation events occurring in long-lasting linear features that appear to correspond to displacement (or velocity) discontinuities in the deformation field due to leads.





Deborah Sulsky ECCO2 Meeting, Nov. 9-10, 2009

### **Elastic-Decohesive Sea Ice Model**

Overall Objective: Numerically simulate "linear kinematic features" (eg. leads and ridges)

Initial Focus: Prediction and appearance of leads

Proposed Approach: Elastic-Decohesive Model

For thick first-year ice and multi-year ice, we assume most deformation occurs due to discontinuities in the displacement field.

Ice is quasibrittle so we can borrow from models of concrete and rock.



#### **Elastic-Decohesive Model**

- Intact ice modeled as elastic
- Leads modeled as discontinuities
- Model predicts initiation of a lead and its orientation
- Traction is reduced with lead opening until a complete fracture forms
- Implementation similar to elastic-plastic model









Schreyer, H., L. Monday, D. Sulsky, M. Coon, R. Kwok (2006), Elastic-decohesive Constitutive Model for Sea Ice, J. of Geophys. Res., 111, C11S26, doi:10.1029/2005JC003334.

# Simulate a Region of the Beaufort





# Simulate a Region of the Beaufort





## **Problem Set Up**

## Simulate 16 days in Feb/Mar, 2004



$$E = 1 MPa$$

$$v = 0.36$$

$$\tau_{\rm nf} = 25 \text{ KPa}$$

$$\tau_{\rm sf} = 15 \text{ KPa}$$

$$f'_{c} = 125 \text{ KPa}$$

$$u_0 = 400 \text{ m}$$

$$s_m = 4$$

Apply known winds and ocean currents from a model.

The University of New Mexico

#### **Material-Point Method**

Solves standard momentum equation

$$(\rho h)\frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h)f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

Inertia

Coriolis Stress div

Air Drag:

$$\mathbf{t}_a = c_a \rho_a \|\mathbf{v}_a\| \mathbf{R}_a \mathbf{v}_a$$

$$\mathbf{t}_{a} = c_{a} \rho_{a} \|\mathbf{v}_{a}\| \mathbf{R}_{a} \mathbf{v}_{a} \qquad \mathbf{R}_{a} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Water Drag:

$$\mathbf{t}_{w} = c_{w} \rho_{w} \|\mathbf{v} - \mathbf{v}_{w}\| \mathbf{R}_{w} (\mathbf{v} - \mathbf{v}_{w}) \qquad \mathbf{R}_{w} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$$



Plus ice thickness distrubution and Bitz-Lipscomb thermodynamics

## Initialization

# Where are existing leads?





### **Fracture Patterns in the Beaufort**

# day 55





Observation

Simulation



### **Fracture Patterns in the Beaufort**

# day 60





Observation

Simulation



## **Fracture Patterns in the Beaufort**

# day 70





Observation

Simulation



#### **Notes**

#### Calculations were done

- without tuning parameters
- with crude initial guess
- with no refreezing of leads
- with errors from preprocessing satellite data



### **Summary**

### Features of elastic-decohesive model:

- Stress state at which leads initiate
- Orientation of lead at initiation
- Evolution of lead (softening)
- Existing material weakness
- Implemented in plasticity framework

## Work in progress:

- Initial conditions
- Freezing model
- Coupling to ocean
- Metrics

